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A new method to compute fully differential double photoionization cross sections of atoms has been devised
and fully developed for two-electron systems. The method exploits the Green function for two noninteracting
electrons in the field of a nuclear charge to infer the effects of the residual potential projected on a set of
L2-basis functions. Test calculations on helium at 100 eV excess energy indicate that, as long as the relevant
part of the interaction potential is accounted for, the fully differential cross sections calculated in acceleration
and velocity gauges converge in absolute value and reproduce measured angular distributions with a tunable
accuracy. Generalization of the method to treat double photoionization of many-electron atoms is sketched.

I. Introduction

Since its first measurement in 1993,! the single-photon triple-
differential cross-section (TDCS) of helium double photoion-
ization (DPI) has been the subject of extensive theoretical
and experimental investigations. Now its phenomenology and
fundamental mechanisms have been well established,? and
TDCS of many-electron atoms are probably the next, more
challenging target of the theoretical investigation. In this context,
experimentalists have already recorded DPI cross sections of s
and p shells in heavier noble gases, and peculiar characteristics
have emerged that still await an accurate theoretical explanation.
To mention just two of them: the interference between direct
double photoionization channels of different symmetries® and
between direct and indirect channels.*

From the theoretical point of view, double photoionization,
together with the similar process of electron-impact ionization,
is a formidable task because of its sensitivity to correlation, its
small cross sections compared to the dominant single ionization
channels, and the complexity of the appropriate boundary
conditions.’~” Most of the methods which proved successful in
describing breakup of two-electron systems either cannot be
readily applied to many-electron atoms, or require huge nu-
merical resources.

We propose here an essentially novel approach to double
photoionization, which yields sufficiently accurate results for
helium TDCS with a modest computational effort: a method
that contains internal parameters that allow to tune the quality
of the calculation to the required degree of accuracy and can
be extended also to the study of DPI of many-electron atoms.
For comparison with the existing techniques, we shall first
survey briefly the most prominent among them, and then
describe our method with applications to helium DPI.

Considerable effort has been spent in the early nineties to
formulate analytical expressions for the final wave function of
three charged particles that incorporate explicitly some aspects
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of the complicated asymptotic behavior of the full fragmentation
channel. Despite some success, particularly with the three
Coulomb-wave (3C) approach,® '° a close scrutiny'""'? eventu-
ally concluded that even the most sophisticated among these
methods usually yield inaccurate results, with few exceptions
due to fortuitous agreement with experiment. It was realized
that any successful method could not avoid heavy calculations
and should somehow circumvent the prohibitive three-body
breakup boundary conditions.

Following this direction, Shakeshaft et al. proposed an
approach'>'* in which the final wave function is expressed as a
product of two screened Coulomb-wave functions (2SC) plus
a localized component to correct for short-range interactions
among the three charged particles. Unfortunately, the obtained
cross section relies on the summation of a divergent series which
presents serious numerical problems (see, e.g., ref 15). The
method was therefore abandoned.

Nowadays, there are four main methods'® well describing the
physics of helium single-photon double-ionization processes:
the Hyperspherical R-Matrix with Semiclassical Outgoing
Waves (HZM-SOW), the Time Dependent Close Coupling
(TDCC), the Convergent Close Coupling (CCC), and the
Exterior Complex Scaling (ECS) method.

In the H?M-SOW method, proposed by Malegat et al.,!”
the hyperangular variables are discretized and the R-matrix
solution within an hypersphere of radius Ry is semiclassically
propagated outward up to a certain hyper-radius, where the
outgoing flux is evaluated. This method gives very good results
for helium DPI'®~?° but is numerically very demanding. Flux-
extrapolation methods are known indeed to be inherently slowly
convergent, even for short-range interactions,?! since the required
asymptotic form is approached at distances much larger than
the interaction range itself.?* Furthermore, H/#M-SOW requires
large distances also to confine the contribution of single
ionization channels, and, more seriously, hyperspherical coor-
dinates cannot be readily matched to ordinary spherical coor-
dinates, a fact that hinders the extension of H#ZM-SOW to
many-electron atoms. (See, e.g., ref 23 for beryllium DPI).

The Time Dependent Close Coupling method, introduced
initially to deal with (e, 2¢) processes,”* has been extended in
the late nineties to (y, 2e) processes for obtaining total®> and
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fully differential®*?’ helium DPI cross sections. The authors
devised a method to extract the differential cross section from
the time dependent scattering component of the wave function;
this method circumvents the bottleneck of a slowly convergent
outgoing flux, but still relies on lattice techniques which require
very large computational resources to provide accurate results.
The extension of TDCC to many-electron atoms seems not easy
to be realized. (See, e.g., ref 29 for beryllium DPI).

The Convergent Close Coupling method,* initially introduced
by Bray and Stelbovics in the frame of the two-body scattering
problem, was recognized as a useful tool also for the three-
body problem,* yielding accurate total ionization cross sections
for both (e, 2e)*! and (y, 2e) processes.*? CCC was later shown
to be able to reproduce also multiple-differential cross
sections.73 Despite its success, the CCC method attracted
some criticism:* its use to obtain differential cross sections
appears essentially justified on practical evidence and heuristic
speculations, rather than sound mathematical arguments, and
its convergence is inherently slow due to the effort of ap-
proximating a generally discontinuous single differential cross
section.’’” Because of this fact, very large computational
resources are needed to obtain converged results, as pointed
out also by Bray himself.*

Finally, the Exterior Complex Scaling method® solves the
Lippmann—Schwinger equation of the scattering problem in a
form where the sought solution is expressed entirely in terms
of its asymptotic form for (e, 2e) processes, or in terms of the
driven Schrodinger equation for (y, 2e) processes. The ap-
propriate Green function, regular on the real axis and with the
required outgoing-wave boundary conditions, is obtained by
inverting the projected (E — Hpy) operator, where Hy is a
“complex rotated” Hamiltonian. When applied to helium DPI,
ECS yields TDCS in excellent agreement with the experiment**'®
but, for many-electron atoms, the “all outgoing” criterion applied
to the driven Schrodinger equation may prove inadequate. It is
not clear, indeed, how to extract from the full scattering function
the amplitudes of the different channels when the grandparent
ion may emerge in an excited state. At the moment, this
drawback is common to all the proposed complex scaling
techniques,*! that lose track of branching ratios and, conse-
quently, of partial cross sections when applied to many-electron
atoms.

The method we present here is a generalization of that
proposed in ref 42. It utilizes an unperturbed two-electron
reference channel in which the interelectronic repulsion is
neglected altogether and the two outgoing electrons are treated
on equal footing. The eigenfunctions of this channel are suitably
coupled products of one-electron functions in the field of the
grandparent ion. The interelectronic interaction is then intro-
duced as a projected potential, well represented by a set of
B-spline functions up to a relatively large radius (few tens of
atomic units), where the kinetic energy of the outgoing electrons
is expected to be large in comparison with their mutual potential
energy (for a large part of the angular domain of interest). Using
a projected potential, the scattering problem with outgoing-wave
boundary conditions in the double ionization channel can be
formulated in terms of a solvable Lippmann-Schwinger equation.

The present method is similar to CCC, in that it uses a close-
coupling approach but differs from CCC since the two electrons
are treated on equal footing. The method is also similar to ECS
since it solves a Lippmann—Schwinger equation with suitable
choice of the boundary conditions. The difference is that our
method utilizes an unperturbed Green function defined exploiting
the identity resolution on a complete set of two-electron

dE, dQ, dQ,
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functions for the bound—bound, bound-continuum and continuum-
continuum parts of the spectrum. The matrix elements of the
unperturbed Green function are then computed on a basis set
of B-splines.

A major advantage of this method is also that its procedures
are well-defined not only for two-electron systems (in which
case the appropriate Green function is the two-particle Coulomb
Green function) but also for many-electron systems, for which
the state of the grandparent ion can be suitably represented by
a determinantal function orthogonal to the continuum channel.

II. Theoretical Method

The triple differential cross section for the double photoionization
of a bound state (¢) to a final state (a) of the grandparent ion
with two outgoing electrons of momentum k;, k, and spin projection
0y, 0y, respectively, is given by

do _ 4T - 2
dEl dQ] dQZ - cw k1k2|<¢a,klolk202|01|¢0>| (1)

where, in dipole approximation, the transition operator is (/; =

é- Z§V=1V,-, with N being the number of electrons and € the
photon polarization vector.

Huetz et al. derived* the following TDCS expression for a
linearly polarized incident light

99— = \ay(ky ko 0,)(c08 B, + cos 0,) +

ay(ky, ky, 0,,)(cos B, — cos O,)I*  (2)

where a, and a, are complex amplitudes, symmetric and
antisymmetric upon interchange of the two energies. The
dependence of these coefficients on 0, can be expressed exactly
in terms of Legendre polynomials and reduced matrix ele-
ments: #43

gk Ky, 015) = 2 Cr (0, A;gw/Lulkllkz 3)
1
where
N P(cos 0,,) = P, (cos 6,,)
Czi(elz) — (1 I+ 115 12 I+1 12
47 (1 £ cos 6,,)
“
and
u ‘T[klkz —1po —lpo
Algl/k]lzkz Y, %«wa;lfkllzkzllp i) + <¢a;lll)k212k1”P o))
)

The problem is thus reduced to the determination of the
transition matrix elements between a bound state of the target
atom and a scattering wave function with two outgoing electrons
of definite asymptotic energy and angular momentum.

It is well-known that the difficult part of the problem is the
accurate representation of the final continuum state. At low
energies the Coulomb interaction of the two outgoing electrons
must be fully taken into account up to very large radii. From
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intermediate to high energies (typically 10 eV above the DPI
threshold), however, the kinetic energy of the two electrons
dominates over their repulsion already at few tens of atomic
units from the ion. The two-body terms in the Hamiltonian can
be, therefore, projected on an orthonormal L* two-particle basis
set {y} capable of representing all the relevant features of the
two-particle states inside a spatial domain of radius R. This
means to substitute the true repulsive potential with a projected
potential:

V— V= IV V= @'%'X) ©)
12

thus reducing the global Coulomb interaction to an effective
three body potential in which the two electrons repel each other
as long as both are within a radius R from the nucleus:

OR —r)OR — 1y

(N

V)

Thanks to this drastic regularization of the potential, one can
define a solvable Lippmann—Schwinger (LS) equation for the
scattering wave function with outgoing-wave boundary condi-
tions. For a two-electron atom the equation is

Wi,a,%zaz,r = ‘1’%,0,%202 + G(;(E)Vwilolzzoz (8)

where @7,67,0, is an antisymmetrized (<) product of two
Coulomb waves:

B ot = V2007, (F 6D 07, (Fr &) 9)
defined as
2000(F ) = d7 () *,(©) (10)

—yl2 o - -
o (7)) = %ﬁe‘k"ﬂiwllik;’ —ik*7F)
JU
(11)

with y = —Z/k and 2)((,(C) a one-particle doublet spin function.
The solutions of eq 8 can be expressed as linear combinations
of independent irreducible tensorial components

0 2 CS[/Z)O (1/2)0,(// 1,1 (kl’ kz)% kLo, (12)

Thi

Yiok
where 7/71 is a bipolar spherical harmonic:

/ (QI’QZ) = Z Cfﬁflzzmz lml(Q )Y (Qz)

mymy

(13)

and I" specifies a complete set of good quantum numbers for
spin and orbital angular momenta, their projections, and the
parity: I' = (S, L, 2, M, II). In real calculations, the sum in eq
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12 is truncated by imposing the constraint [y, [, < I, Where
Imax 18 the parameter which defines the expansion accuracy.
Within a specific symmetry, the LS equation becomes

-r  _ ,-T — (7T
Vitkot, = Priis, T Go BV 100, (14)

where

2P0, Fi L) A G OIS (19)

r —
d)klllkzlz -

and the following normalization has been chosen

-Tr -I — -r T = !
<wl,k,lzk2|w1{kfl;k§> = <¢llk,lzk2|¢lfkfl;k;> - k]2k22 x
[0,,101,1,0(k — K7) Ok, — k) —

8,100k — K5) O(ky — kY]

(16)

Since the interaction potential has been replaced by the projected
potential V, the only quantity to be calculated is the projection
of the LS wave function onto the chosen basis set:

VAL k217> = (o, k212> + Gor(E) V(Xh/)klllkJZ
(17)

with
Gyr(E) = <X|G(;F(E)|X> (18)

The LS solution of eq 8 with outgoing-wave boundary condi-
tions is given by

= Giiy, T GorBIVIL = GBI Gl 1 1)

(19)

-
Vi 1k,

Furthermore, by exploiting the fact that the target wave function
in eq 1 is strongly localized even after applying the transition
operator, one can use the following approximation:

<¢o” a ”X)(X“/’k 1kl
GorE)VI (110

(qboll()lhpklkl

(ol 411 — (20)

This is the key equation of our method. It requires accurate
calculations of the matrix elements of the two-particle Coulomb
Green function, for which we have used the following identity
resolution on a complete set of two-electron functions for the
bound—bound, bound-continuum and continuum-continuum
parts of the spectrum:

GorE) = GoUE) + Gy (B) + Gor“(E)  (21)

where
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Gor(E) = %%
DX,
e 2 2 Jo¥ dk —E, kﬁ IS /2kuj|E iot (22)
Goi““(E) =
i% 1 _'_1‘511' j(‘)m ¥ dk j(')""kﬂ dk'E — k2/;k”—</:I’)2k/kZ”|j: iot
(23)

The two-particle functions are defined as

lq>5n ll> = [2¢nl/\2¢n’l’]r[l(_)S+Léll 6nn ]_1/2 (24)

D)) = Pl (25)
Dy = Coun’di ) (26)
with
Cpan’d.l’ =
(RO YD W e oirWHRE S W W 1)

mm' o0’

where 2¢,.0 and 2¢y,, are hydrogen-like bound and continuum
functions in the field of a nuclear charge Z (see Appendix A).

To evaluate the right-hand side of eq 20, it is necessary to
represent accurately the exact unperturbed two-particle Coulomb
Green function using an appropriate projection basis set {y}.
In the present calculations, the Green function has been
expressed in terms of 500 bound and 1000 continuum states,
whose linear momenta are suitably chosen (for each basis
function) in the interval [107%, 10°] au so to faithfully reproduce
the Coulomb transform of the wave function itself. This means
that the final wave function is expanded over roughly two
million states for each orbital angular momentum. The overlap
between basis functions and Coulomb functions is obtained by
interpolation. The integrals in eqs 22 and 23 are then evaluated
numerically using standard quadratures.

Finally, we observe that the unperturbed part of the LS wave
function 19, expressed as the product of two continuum
Coulomb functions, is orthogonal to any single-ionization close-
coupling function, since both refer to the same residual charge
of the parent ion. The fact that this choice of the charge might
be effective to eliminate spurious contributions from the single-
ionization channels and to reduce the dimension of the interac-
tion box has been already pointed out in refs 22 and 46.

III. Generalization to Many-Electron Atoms

The generalization of the method to many-electron atoms is
straightforward in the case of DPI processes in which the state
of the grandparent ion is total-symmetric and energetically well
isolated, as for example in the case of photoionization of the
valence shell of alkaline-earths atoms. The main difference with
the helium case is that the unperturbed continuum functions
are no longer ordinary Coulomb functions, but they have to be
orthogonal to the wave function of the parent ion itself.
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For nontotally symmetric cases, or when the grandparent ion
itself can exist in different excited states, as for example in the
case of rare gases with a double hole in the valence shell, it is
still possible to define orthogonal two-electron channels, each
one associated to a different grand-parent ion state. The formal
generalization of eq 8 is given by

Vorikt, = Pakii, T 2 Go(EWVyoWor iy, (28)
v

and eq 20 becomes

<¢0” (Qlllw;,klllkzl) =

GHOIN = X G BV, ol sy P
Y

IV. Results and Discussion

In this section, we compare TDCS of helium DPI calculated
using our method with the corresponding angular distributions
measured by Knapp et al.*’ at an excess energy of 100 eV in
equal and unequal energy sharing. In these measurements, the
uncertainty on the emission direction of the first (reference)
electron is 5° around the nominal values (£3° for 6, = 45°)
and the uncertainty on its energy is +5 eV; the angular
distributions of the complementary electron are within the plane
defined by the polarization vector and the reference electron
within +15° (£5° for 8, = 0°). Our TDCS are given in barn/
(eV rad), the standard units for the 4-fold differential cross
sections, their comparison with those of ref 47, normalized to
the total cross section measured in refs 48 and 49, requires the
multiplication of the measured TDCS by a factor 10. This
difference should probably reduce appreciably by convoluting
the theoretical TDCS with the experimental uncertainties. We
point out, indeed, that the order of magnitude of our TDCS is
in close agreement with that of the TDCS measured by Turri et
al.> at excess energy of 80 eV with higher energy and angular
resolution, and normalized to accurate CCC calculations.

The matrix elements of the two-particle Coulomb Green
function and of the projected potential have been calculated
using a basis set of B-spline of order kX = 8§, defined on knots
of uniform asymptotic spacing (0.75 au) and short-range spacing
chosen to optimize the helium ground state. (See ref 51 for a
detailed definition of the parameters characteristic of a B-splines
basis set.)

In order to examine the convergence of the method with
respect to the two main parameters: box radius (R) and largest
orbital angular momentum (/,,), we have carried out calcula-
tions with 28.8 au < R < 40 au and 4 < [,.x < 6, in both
acceleration and velocity gauge. In Figure 1, we compare the
calculated TDCS with the angular distribution measured in
unequal energy sharing (E; = 30 eV, E, = 70 eV) and reference
electron collected along the polarization direction of the incident
light (6, = 0°, somewhat the most demanding angular config-
uration in terms of interelectronic correlation). A few trends
emerge from the inspection of Figure 1:

* As the box radius increases, the two major lobes squeeze

and approach the experimental ones.

* The spurious lobe in the forward direction (kinematically
favored but depressed by the electron repulsion) disappears
as larger orbital angular momenta (i.e., more electron
correlation) are included in the calculation.
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Figure 1. Four-fold differential cross section of the helium DPI on absolute scale in [barn/(eV rad)] measured in unequal energy sharing (£, = 30
eV, E; = 70 eV), and calculated with our method for different values of the box radius (R,) and maximum angular momentum (L,). The arrows
indicate the direction of emission (6; = 0°) of the reference electron with respect to the polarization direction of the incident light. The points with
error bars are experimental values*’ multiplied by a factor 10, the continuous line is the TDCS calculated in acceleration gauge, the dashed line in
velocity gauge.
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Figure 2. Four-fold differential cross section of the helium DPI on absolute scale in [barn/(eV rad)] measured in equal and unequal energy sharing
and calculated with box radius R = 32.5 and maximum angular momentum /,,,x = 6. The arrow indicates the direction of emission of the reference
electron with respect to the polarization direction of the incident light. The points with error bars are the experimental values*’ multiplied by a
factor 10, the continuous line is the TDCS calculated in acceleration gauge, the dashed line in velocity gauge. The thin continuous line is the TDCS
calculated in ref 47 with the CCC method.
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* With the set of parameters (R,, = 32.5 au, /,,x = 6) that
better reproduce the measured angular distribution in these
test calculations, the agreement between the two gauges is
quite good both in shape and in absolute value. Notice that
the TDCS calculated in the length gauge (not reported here)
have lobes generally larger and less regular than in the other
two gauges. Similar evidence have been reported also by
Kheifets and Bray.*?

In Figure 2, we compare our TDCS, calculated with R,, =
32.5 au and I, = 6, with angular distributions measured*’ at
equal energy sharing (E; = E, = 50 eV) and two (complemen-
tary) unequal energy sharings: (E; = 30 eV, E, = 70 eV), (E;
=70¢eV, E, = 30 eV) for three emission directions of the first
electron (6, = 0°, 30°, 60°). For comparison, in the same figure,
we plot also the TDCS calculated in ref 47 with the CCC
method.

We see that, in the case of equal energy sharing, the
agreement between our TDCS and the measured ones is pretty
good for each emission direction of the primary electron. In
unequal energy sharing, the agreement is noteworthy for 6, =
0°, mainly in the acceleration gauge, while for larger angles it
becomes less satisfactory. The comparison between our results
and the CCC calculations of ref 47 indicates a better quality of
the latter only at 8; = 90°. These facts suggest the need of
including higher angular momenta and probably also of extend-
ing the box radius to improve the quality of the results obtained
with our method.

V. Conclusions

A new method based on the solution of a Lippmann—
Schwinger equation with two-particle Coulomb Green function
and projected interelectronic potential has been proposed to
calculate DPI TDCS of atoms. Preliminary results obtained for
helium DPI have been compared with measured and calculated
angular distributions at equal and unequal energy sharing.

The analysis of these results indicates that a proper choice
of the two main parameters of the method: box radius and largest
angular momentum, allows one to obtain sufficiently accurate
results with a modest computational effort. Considering that
other parameters are available, such as those characteristic of
the L? basis set used for the matrix representations, and plenty
of room is available to improve the present implementation of
the method, we are confident that the level of accuracy can be
largely increased without increasing too much the required
computational effort.

We point out that this method is also appealing because it
provides a clear computational scheme that can be applied also
to the calculation of DPI TDCS of many-electron atoms.
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Appendix A: Hydrogen-Like Bound and Continuum
Functions

The hydrogen-like bound and continuum functions in the field
of a nuclear charge Z are defined in terms of the confluent
hypergeometric function: F,;(2Zr/n), and the regular continuum
Coulomb radial function: Fi(y;p), respectively, as follows

¢nlm(_’:) = Z3/2anFnl(Q‘) Ylm(f) (Al)
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_2 [n—1-1)!
N = 2 (n+ 1! (A2)

F(x) = xe L1 () (A3)
L) = (” : k )F(—plk + 112) (A4)
_ N o+nTe
Flodpty) = 20 T() T8 + n) nl (A5)
and
2Grmo (P2 ©) = (PO (A6)
Gun(T) = i'e” 7y, (F) (A7)
_ Fyskr)
Dunl(P) = =Y (#) (A8)
Fiyip) = 2le—ny/2|r(l +1+ iV)|eippl+1 y

Q@+ 1!
F(+ 1+ iyl2l + 21—2ip) (A9)

The adopted normalization conditions are the following

<2¢nlm0|2¢n'l'm'0/> = 611}1’611’5mm'600’ (AIO)
Cnal Beam) = 2500 = KD0u0, 00 (ALD

References and Notes

(1) Schwarzkopf, O.; Krissig, B.; Elmiger, J.; Schmidt, V. Phys. Rev.
Lett. 1993, 70, 3008.
(2) Avaldi, L.; Huetz, A. J. Phys. B 2005, 38, S861.
(3) Krissig, B.; Schaphorst, S. J.; Schwarzkopf, O.; Scherer, N.;
Schmidt, V. J. Phys. B 1996, 29, 4255.
(4) Schaphorst, S. J.; Jean, A.; Schwarzkopf, O.; Lablanquie, P.; Andric,
L.; Huetz, A.; Mazeau, J.; Schmidt, V. J. Phys. B 1996, 29, 1901.
(5) Rudge, M. R. H.; Seaton, M. J. Proc. R. Soc. A 1965, 283, 262.
(6) Brauner, M.; Briggs, J. S.; Klar, H. J. Phys. B 1989, 22, 2265.
(7) Maulbetsch, F.; Briggs, J. S. Phys. Rev. Lett. 1992, 68, 2004.
(8) Maulbetsch, F.; Briggs, J. S. J. Phys. B 1993, 26, L647.
(9) Maulbetsch, F.; Briggs, J. S. J. Phys. B 1993, 26, 1679.
(10) Berakdar, J.; Briggs, J. S. Phys. Rev. Lett. 1994, 72, 3799.
(11) Lucey, S. P.; Rasch, J.; Whelan, C. T.; Walters, H. R. J. J. Phys.
B 1998, 31, 1237.
(12) Lucey, S. P.; Rasch, J.; Whelan, C. T. Proc. R. Soc. A 1965, 455,
349.
(13) Proulx, D.; Shakeshaft, R. Phys. Rev. A 1993, 48, 875(R).
(14) Pont, M.; Shakeshaft, R. Phys. Rev. A 1995, 51, 2676(R).
(15) Pont, M.; Shakeshaft, R.; Maulbetsch, F.; Briggs, J. S. Phys. Rev.
A 1996, 53, 3671.
(16) Horner, D. A.; Colgan, J.; Martin, F.; McCurdy, C. W.; Pindzola,
M. S.; Rescigno, T. N. Phys. Rev. A 2004, 70, 06401.
(17) Malegat, L.; Selles, P.; Kazansky, A. Phys. Rev. A 1999, 60, 3667.
(18) Malegat, L.; Selles, P.; Kazansky, A. K. Phys. Rev. Lett. 2000, 85,
4450.
(19) Selles, P.; Malegat, L.; Kazansky, A. K. Phys. Rev. A 2002, 65,
032711.
(20) Collins, S. A.; et al. Phys. Rev. A 2002, 65, 052717.
(21) Baertschy, M.; Rescigno, T. N.; McCurdy, C. W. Phys. Rev. A
2001, 64, 022709.
(22) McCurdy, C. W.; Rescigno, T. N. Phys. Rev. A 2000, 62, 032712.



15084 J. Phys. Chem. A, Vol. 113, No. 52, 2009

(23) Citrini, F.; Malegat, L.; Selles, P.; Kazansky, A. K. Phys. Rev. A
2003, 67, 042709.

(24) Pindzola, M. S.; Schultz, D. R. Phys. Rev. A 1996, 53, 1525.

(25) Pindzola, M. S.; Robicheaux, F. Phys. Rev. A 1998, 57, 318.

(26) Colgan, J.; Pindzola, M. S.; Robicheaux, F. J. Phys. B 2001, 34,
L457.

(27) Colgan, J.; Pindzola, M. S. Phys. Rev. A 2002, 65, 032729.

(28) Colgan, J.; Foster, M.; Pindzola, M. S.; Robicheaux, F. J. Phys. B
2007, 40, 4391.

(29) Colgan, J.; Pindzola, M. S. Phys. Rev. A 2002, 65, 022709.

(30) Bray, I.; Stelbovics, A. T. Phys. Rev. Lett. 1992, 69, 53.

(31) Bray, L; Stelbovics, A. T. Phys. Rev. Lett. 1993, 70, 746.

(32) Kheifets, A. S.; Bray, . Phys. Rev. A 1996, 54, 995(R).

(33) Konovalov, D. A.; Bray, I.; McCarthy, 1. E. J. Phys. B 1994, 27,
L413.

(34) Briuning, H.; 1998, 31, 5149.

(35) Cvejanovig, S.; Wightman, J. P.; Reddish, T. J.; Maulbetsch, F.;
MacDonald, M. A.; Kheifets, A. S.; Bray, 1. J. Phys. B 2000, 33, 265.

(36) Rescigno, T. N.; McCurdy, C. W.; Isaacs, W. A.; Baertschy, M.
Phys. Rev. A 1999, 60, 3740.

(37) Bray, L. Phys. Rev. Lett. 1997, 78, 4721.

(38) Bray, L. Phys. Rev. Lett. 2002, 89, 273201.

(39) McCurdy, C. W.; Rescigno, T. N.; Byrum, D. Phys. Rev. A 1997,
56, 1958.

Argenti and Colle

(40) McCurdy, C. W.; Horner, D. A.; Rescigno, T. N.; Martin, F. Phys.
Rev. A 2004, 69, 032707.

(41) McCurdy, C. W.; Baertschy, M.; Rescigno, T. N. J. Phys. B 2004,
37, R137.

(42) Colle, R.; Simonucci, S. J. Phys. B 2002, 35, 4033.

(43) Huetz, A.; Selles, P.; Waymel, D.; Mazeau, J. J. Phys. B 1991, 24,
1917.

(44) L Malegat, P. S.; Huetz, A. J. Phys. B 1997, 30, 251.

(45) Malegat, L.; Selles, P.; Lablanquie, P.; Mazeau, J.; Huetz, A. J.
Phys. B 1997, 30, 263.

(46) McCurdy, C. W.; Horner, D. A.; Rescigno, T. N. Phys. Rev. A
2001, 63, 022711.

(47) Knapp, A.; et al. J. Phys. B 2005, 38, 615.

(48) Samson, J. A. R.; He, Z. X.; Yin, L.; Haddad, G. N. J. Phys. B
1994, 27, 887.

(49) Samson, J. A. R.; Stolte, W. C.; He, Z. X.; Cutler, J. N.; Lu, Y.;
Bartelatt, R. J. Phys. Rev. A 1998, 57, 1906.

(50) Turri, G.; Avaldi, L.; Bolognesi, P.; Camilloni, R.; Coreno, M.;
Berakdar, J.; Kheifets, A. S.; Stefani, G. Phys. Rev. A 2002, 65, 034702.

(51) Argenti, L.; Colle, R. Comput. Phys. Commun. 2009, 1, DOI:
10.1016/j.cpc.2009.03.002.

JP90S155W



